Strong alignment of prolate ellipsoids in Taylor–Couette flow

نویسندگان

چکیده

We report on the mobility and orientation of finite-size, neutrally buoyant prolate ellipsoids (of aspect ratio $\Lambda=4$) in Taylor-Couette flow, using interface resolved numerical simulations. The setup consists a particle-laden flow between rotating inner stationary outer cylinder. simulate two particle sizes $\ell/d=0.1$ $\ell/d=0.2$, $\ell$ denoting major axis $d$ gap-width cylinders. volume fractions are $0.01\%$ $0.07\%$, respectively. particles, which initially randomly positioned, ultimately display characteristic spatial distributions can be categorised into four modes. Modes $(i)$ to $(iii)$ observed Taylor vortex regime, while mode ($iv$) encompasses both wavy vortex, turbulent regimes. Mode corresponds stable orbits away from cores. Remarkably, narrow $\textit{Ta}$ range, particles get trapped cores (mode ($ii$)). is transition when modes $(ii)$ observed. For $(iv)$, distribute throughout domain due instabilities. All show orientational statistics. find clustering for ($ii$) size-dependent, with main observations. Firstly, agglomeration at core much higher $\ell/d=0.2$ compared $\ell/d=0.1$. Secondly, range depends size. this we observe align strongly local cylinder tangent. most pronounced alignment around $\textit{Ta}=4.2\times10^5$. This observation found closely correspond minimum axial vorticity ($\textit{Ta}=6\times10^5$) explain why.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Needlelike motion of prolate ellipsoids in the sea of spheres

Molecular dynamics simulations of translational motion of isolated prolate ellipsoids in the sea of spheres have been carried out for several different values of the aspect ratio ~k!, obtained by changing either the length or the diameter of the ellipsoids, at several different solvent densities. The interaction among the spheres is given by the Lennard-Jones pair potential while that between s...

متن کامل

Structure and interactions in fluids of prolate colloidal ellipsoids: comparison between experiment, theory, and simulation.

The microscopic structure of fluids of simple spheres is well known. However, the constituents of most real-life fluids are non-spherical, leading to a coupling between the rotational and translational degrees of freedom. The structure of simple dense fluids of spheroids - ellipsoids of revolution - was only recently determined by direct experimental techniques [A. P. Cohen, E. Janai, E. Mogilk...

متن کامل

A Mean Value Property of Harmonic Functions on Prolate Ellipsoids of Revolution

We establish a mean value property for harmonic functions on the interior of a prolate ellipsoid of revolution. This property connects their boundary values with those on the interfocal segment.

متن کامل

Dynamics of prolate spheroidal elastic particles in confined shear flow.

We investigate through numerical simulations the dynamics of a neo-Hookean elastic prolate spheroid suspended in a Newtonian fluid under shear flow. Both initial orientations of the particle within and outside the shear plane and both unbounded and confined flow geometries are considered. In unbounded flow, when the particle starts on the shear plane, two stable regimes of motion are found, i.e...

متن کامل

a generalization of strong causality

در این رساله t_n - علیت قوی تعریف می شود. این رده ها در جدول علیت فضا- زمان بین علیت پایدار و علیت قوی قرار دارند. یک قضیه برای رده بندی آنها ثابت می شود و t_n- علیت قوی با رده های علی کارتر مقایسه می شود. همچنین ثابت می شود که علیت فشرده پایدار از t_n - علیت قوی نتیجه می شود. بعلاوه به بررسی رابطه نظریه دامنه ها با نسبیت عام می پردازیم و ثابت می کنیم که نوع خاصی از فضا- زمان های علی پایدار, ب...

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Fluid Mechanics

سال: 2022

ISSN: ['0022-1120', '1469-7645']

DOI: https://doi.org/10.1017/jfm.2021.1134